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WAVE PROPAGATION IN A LAYERED ELASTIC PLATE

R. A. SCOTT

Engineering Mechanics Department, University of Michigan, Michigan 48104

Abstract-Formal solutions to a broad class of transient, symmetric, elastic wave problems involving a three
layered plate are presented in terms of the modes of harmonic wave propagation. An approximation to the
lowest mode is developed and, using this and the formal solutions, far-field expressions are developed for three
specific problems. These approximate expressions are analyzed numerically for two specific cases.

INTRODUCTION

IN A recent work [1], the author treated certain aspects of transient elastic wave propagation
in an infinite inhomogeneous plate. There the material properties were taken to vary
continuously in the thickness direction. The current paper extends that work to situations
where discrete layering occurs.

Elastic transients in layered media have attracted attention over the years due to their
importance in the fields of seismology and laminated composites. In seismology, consider­
able work has been done on the case of a single layer over a half space (see Newlands [2J,
Pekeris et al. [3,4], Mitra [5], Laster et al. [6]). In the case of two layers over a half space,
the work of Mitra [7] on SH-transients should be noted. The studies on composites are
somewhat different in that most authors confine their attention to infinite periodic media,
i.e. to a two-layered structure that repeats itself indefinitely. Voelker and Achenbach [8]
presented approximate and exact results for transients generated by a time-dependent
body force in such a medium. Peck and Gurtman [9] studied transients in a half space, the
material of which was periodic. They gave and analyzed a long wave approximation, valid
for the far-field (the head of the pulse approximation). In the same area, the work of Sve
[10] using the effective stiffness theory of Achenbach et al. [11] should be noted.

Here, formal solutions are given to a broad class of symmetric, plane-strain, transient,
wave propagation problems involving a three layered plate. The solution technique,
which hinges on the modes of harmonic wave propagation, is similar to that used in [1]
and is related to the methods used by the author [12], Rosenfeld and Miklowitz [13],
Achenbach [14, 15], Reismann [16], Lee and Reismann [17J, WU and Plunkett [18] and
Cobble [19]. The items necessary for the head of the pulse approximation are developed
and then the approximation is applied to three specific problems, namely the longitudinal
impact and mixed pressure shock problems for a semi-infinite plate and the sudden,
symmetric application of normal line loads to an infinite plate.

MODES OF HARMONIC WAVE PROPAGATION

As in [1], solutions to transient problems will be sought in terms of the modes of har­
monic wave propagation for an infinite plate, As opposed to [1] though, now the scheme is
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one of convenience rather than necessity in that, in principle, the modes can be found
analytically. However, the current method leads to head of the pulse approximations
more rapidly.t

The plate geometry and the coordinates used are shown in Fig. 1. This geometry is
equivalent, for the inputs used here, to two perfectly bonded elastic layers of thickness
hI and h2 - hI' respectively, in lubricated contact with a rigid half-space. In the sequel, the
various problems will be examined in this latter context. The stress equations of motion
are, in the absence of body forces, and assuming plane-strain conditions,

j = 1,2,

j = 1,2,

(1)

(2)

z

2

1 x

2

FIG. 1. Geometry of the layered plate.

where p denotes material density, (J stress, u displacement and the subscriptj the layer in
question. The stress-displacement relations are

j = 1,2,

j = 1,2,

j = 1,2,

(3)

(4)

(5)

t Presumably the same is true for problems such as that of Peck and Gurtman [9].
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where Aand Jl. are Lame's constants. The boundary conditions are

1(Jxz = 0,

2(Jxz = 0,

lUz = 0,

z = h2

Z = 0.

(6)

(7)

Also, the assumption of a perfect bond requires the displacements and stresses to be con­
tinuous at z = hi'

To obtain the modes of harmonic wave propagation, one sets

.U (x z t) = .uN(z) eikx + PNt} x " ] x ,

.u (x z t) = .uN(z) eikx + PNt
J Z " } z ,

j = 1,2,

j = 1,2,

(8)

(9)

(10)j = 1,2.

where k denotes wave number, PN a frequency like term and the index N stands for the fact
that an infinite number of modes exist. Substituting (8) and (9) into (3H5), yields modal
stress-dispiacement relations. Typical ones are

N. N dju~
pxx = lk(Aj+2Jl.j)px +Ard~'

Substituting the modal stress-displacement relations into (1) and (2), gives the modal
equations of motion, typical ones being

j = 1,2. (11)

From (6) and (7), the modal boundary conditions are

2(J~z = 0,

l(J~z = 0,

2(J~z = 0,

lU~ = 0,

z = h2

Z = 0.

(12)

(13)

Also, the modal displacements and stresses must be continuous at z = hi'
To develop pertinent properties of the modes the following Hermitian bilinear forms are

introduced:

T(uN,uM) = 2Pl f.h
l

(lU~ lU~' + lU~ lu~')dz+2p2 f.h
2

o h,

X(2U~ 2U~'+ 2U~ 2U~') dz (14)

(15)

where * denotes complex conjugate. Using integration by parts, equations such as (10) (13)
and the continuity conditions at z = hi' it can be shown that

(16)
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Using (16) and the Hermitian properties and taking complex conjugates, it can be shown
that, on defining

(17)

then

T(uN
, U

M
) = bNM

where (jNM denotes the Kronecker delta.

(18)

FORMAL SOLUTIONS TO TRANSIENT PROBLEMS

(19)

Attention will now be focused on a class of transient problems. Taking the Laplace
transform and the Fourier transform defined byt

J(k) = LX) !(x)e-ikXdx = Je-iF

(20)1,2,j

where C and S denote cosine and sine transforms, respectively, of(1) and (2), gives the trans­
formed equations of motion. Typical ones are

djGxz ."' _ I
~+lk/1xx-Pxxl

x=o

where the bar denotes the Laplace transform, parameter p. Taking Laplace and Fourier
transforms of (3H5) yields the transformed stress-displacement relations, typical ones
being

~ dA.."' _
/'xx = Aj~d+ Ik(Aj+2f1)Px-(Aj+2/lj)Pxl ' j = 1,2. (21)

z x=o

The quadruplets of modal displacements (lU~, 2U~, lU~, 2U~), N = 1,2, ... , can be
interpreted as the characteristic vectors in a vector space consisting of quadruplets of
functions. Then, assuming completeness, arbitrary quadruplets can be expressed in terms
of the modal displacements. In particular, the quadruplet of transformed displacements
arising in transient problems can be expanded in this fashion. One obtains

j = 1,2,

j = 1,2,

(22)

(23)

where the r N are expansion coefficients.
It can be shown, using (14), (17), (18), (22) and (23), that

r N = T(u, UN). (24)

Using the bilinear form V(u, UN), integration by parts, equations such as (20) and (21),
the continuity conditions at z = h1 and the modal boundary conditions, it can be shown
that

(25)

t Later, by considering only the odd or even parts of the functions of k that arise, this definition allows one
to handle the longitudinal impact and pressure shock problems simultaneously.



Wave propagation in a layered elastic plate 837

(26)

where V(u, uM
) is given by (15), with UN replaced by it To proceed further, it must be noted

that

N '" ih'
[diU: "'* diuZ "'* . N "'*V(u ,u) = 2 0 d?i O'zZ)'+~(lO'xz),+lkiuAi O'xx),

+ikiU:(l~Z),J dz

f.h
2

[d2U: '" d2u~ '"
+2 hi ~bO:z),+~b~z),

+ ik 2U~(2 i1:x)v + ik 2U:(2 i1:z),JdZ
where the subscript v denotes the fact that the transformed item in question is for an infinite
plate (the geometry for which the properties of T and V were developed), in contrast to the
actual transformed items for a semi-infinite plate, denoted in the sequel by a subscript P.
The two are related, typical relationships being

j = 1,2. (27)

Using equations such as (20), (21) and (27), integration by parts and the continuity con­
ditions at Z = hi, it can be shown that (26) leads to

V(uN,U) = BhN +BON - p2*T(uN, 14) (28)

where

- iU~ iU~xlx=o] dz+ 2 f.h
2

[2~2U~lx=o + 20'~z 2u:lx=0
h,

- 2U: 2u:zlx=0 - 2UZ2u~xlx= 0] dz.

(29)

(30)

For problems involving an infinite plate, BON is set equal to zero. Using (24), (25) and (28),
and the Hermitian properties of the bilinear forms, it can be shown that

(p2_p~*)rN = B:N+B'iJN' (31)

Equations (22), (23), (29H31), constitute the formal solutions to a broadclass oftransient,
symmetric, elastic wave propagation problems. Such solutions are very convenient starting
points for approximate studies, in that the modes of harmonic wave propagation do not
have to be known exactly. The particular approximation to be pursued here, which is
accurate in the far-field, is the head of the pulse approximation.

FAR-FIELD APPROXIMATION

The dominant, early arriving, far-field disturbance is described, for symmetric waves
in homogeneous, infinite rods and plates, by the low-frequency, large wave length portion
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of the lowest mode. The same is taken to be true for the case at hand. To obtain the required
mode approximation, the following wave number expansions are employed:

pi = Po +(ik)2P! +{ik)4P2+ .,.
J-u~ = pxo +(ik)2 jUx! +(ik)4 jUx2+ .. ,,
p~ = (ik)juz!+{ik)3jUZ2+(ik)5jUZ3+ .. "

j = 1,2,

j = 1,2,

(32)

(33)

(34)

where Po, PI , P2, etc., are constants and jUx O-jUz3 are at most functions of z.
Substituting (32H34) into equations such as (lOH13) and (17), and the continuity

conditions at z = h!, sets of relations, which are power series in k, are obtained. On selec­
tively terminating these series, groups of relations for the determination of the unknowns
in (32H34) are found. To order kG, one gets

dpxzI-dz- = PjPOjUxO'

djuxo
iTxz ! = J1j~'

!axz ! = 0,

j = 1,2,

j = 1,2,

z = h2

Z = hI

Z = hI

z=O

These equations are satisfied by
Po = 0

IU xO = 2uxO = 1/-J{2[Plhl +P2(h2-hdJ}·

(35)

(36)

Proceeding as in (1], it can be shown that the relations to order k and k2
, which must

be considered together to get a determinate system, can be satisfied by

IUzl = az, 2Uz! = bz+l (37)

lUX! = cz2+mz+d, 2Uxl = f Z2+ qZ + g (38)

by a suitable choice of the constants a-g. The process is somewhat lengthy, and, in the
interests of brevity, the values of the constants will not be given here. It can also be shown
that the equations to order k 3 and e (the terminal stage for the head of the pulse approxi­
mation) can be satisfied byt

IUz2 = Az3+Bz,

lUx2 = Gz4+Sz3 +/z2+11 z +J

2Ux2 = Kz4+ V!z3+Lz2+ Wz+M

by an appropriate choice of the constants A-M.

t This is a departure from the method used in [I], where at this stage the equations of motion were used. The
current technique is felt to be more straightforward and more capable of generalization.
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As regards the lowest mode approximation, one finds, after considerable algebra, that

wheret

PZPl = /1zr

PZPZ = /11 h7\J.

2Rp [1-R h 1 J
r = R p(1-Rh)-1 I-O"z - R,,(1 0"1)

Rp = PZ/Pl' R" = /1z//11> Rh = hz/hI

('J. = R pA1-R,..Az _ R,..'Pz + [2(1-O"z) rJR 'PI
1+Rp(R h-l) 1-20"z 1-20"z ,..

Al = R,..(1--R~)(4( - P)+ R,..(1-R~)(3~ +'P)-R,..(1-Rh)'PZ 41J+Y3 -Yl

A _ 'P z [2(1-O"Z) rJ'TI R p
tiz - ----+ T 1 Yl

1- 20"z 1-20"z R,,(I- 20"1)

- [2R p(1-0"1) -rJ (0 y+A+'P 1)
R,,(1-20"1)

'Pz = R~[ O"z0 -3PJ+Rh[2'P+ O"z[\ J+ O"z'P l
I-O"z I-O"z I-O"z

'PI = {3(1:70"dZ-1Rp0(R~ 1)-1Y-[Rp(R~-1)+2JA

O"~Rp(R~ -1) RiRh-1)(O"z -O"lf
+ 3(1-O"zf + (1-0"2)2(1-0"1)Z

_ Rp0"2(R~ -1)(O"z -20"d 2(0- Y)} [2+2Rp(Rh-l)J-l
(1 0"1)(1-0"2)

(= [r_ 2(I-O"z)J0 + P
1 20"2 12 4(1-20"z)

0"2(1-20"2) 0
P = 12(1-0"2)Z(r -1)+ 6(1-0"2)

~ [ 2(1- 0"2)J A 'P
= r - 1 20"2 (; 3(1-20"2)

'P _ (1-20"Z)(0"2 -O"d(r -1) A
- 4(1-O"d(1-0"2)2 4(1-0"2)

IJ = [R"r 2(1-0"1)J1-+ Y3
Rp 1-20"1 12 4(1-20"d

Y3 = 0"1(1-20"1)(R,..r -1) +-_Y-
12(1- 0" 1)2 R p 6(1- 0"1)

(39)

(40)

t Though the ensuing expressions are quite complicated, no effort has been made to simplify them further,
since very little would be gained by this from the view point of digilal computation.
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+Ri1-0'2Hl-20'1)(2'P -3P- 'P
2

)

(1-O'd(1-20'2)

20 = 1 [2-0'2+0'2Rp(I-Rh) 2Rp ]
R p(l-Rh)-1 1-0'2 Rj1(l-O'I)

2 1 [2Rp(I-Rh) Ri1- RhHO'l- 2)-0'1]'Y = +-!:-:.-------'=----=----.:--...:.
R p(l-Rh)-1 1-0'2 1-0'1

Ll- 2Rh [__RL 1_]_ 0'2-0'1
- Ri1-Rh)-1 Rp(1 0'1) 1-0'2 (1-0'1)(1-0'2)

where 0'1 and 0'2 denote Poisson's ratio for materials one and two, respectively.
Equations (35H40) are sufficient to implement the head of the pulse approximation,

which is now applied to the following three basic problems: (i) Longitudinal impact
problem. The edge boundary conditions are

x=o

x=o

(41)

(42)

where Uo is a constant and S(t) denotes the Heaviside unit step function. Also, the plate is
taken to be stress free at z = hz. (ii) Mixed pressure shock problem. The edge boundary
conditions are

lUz = zUz = 0, x=O

x=O

(43)

(44)

where 0'0 is a constant. Again, the plate is taken to be stress free at z hz. (iii) Line load
problem. The boundary conditions at z = hz are taken as

z(Jzz: = -LoS(t)b(x), (45)

(46)

where L o is a constant and b denotes the delta function
Inserting (41H46) into (29), (30) and (31), the boundary terms can be evaluated. Using

(19) and retaining only the odd function of k in these terms gives the transformed solution
(Laplace and Fourier sine or cosine) to the longitudinal impact problem, whereas the
transformed solutions (Laplace and Fourier sine or cosine) to the pressure shock problem
stem from the even functions ofk. The full expressions are retained for the line load problem,
but BON is set equal to zero. In all cases the Laplace transforms can be inverted by residue
theory and the Fourier transforms can be inverted by means of the appropriate inversion
theorems. Then, applying the head of the pulse approximation (see [20] for details), some
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NUMERICAL RESULTS

841

(47)

(48)

(49)

(50)

(51)

Some general observations should first be made, namely: (a) The horizontal displace­
ments in materials one and two are identical in the longitudinal impact problem. Moreover,
the amplitude of the pulse is independent of material properties and the thickness of the
layers. However, the periods that arise do depend on these items. (b) The horizontal strains
in materials one and two in the pressure shock problem are identical. (c) The horizontal
displacements in materials one and two in the line load problem are identical.

Shown in Figs. 2-7 are the results of some sample computations of (47H51). Figures
2-6 exhibit the effects of the thickness ratio Rh on the various responses at the station'1 = 80. As regards the other parameters, two cases are treated, namely, O"t = 0"2 = 0·25,
R/l = 13·792275, Rp = 1·39 (case I), which is an example of seismological interest (see
Grant and West [21, p. 84]) and 0"1 = 0·20, 0"2 = 0·41, R/l = 0·00834711, Rp = 0·451711
(case II), which is an example treated by Peck and Gurtman [9] and corresponds to layer
one being boron and layer two being epoxy. Figure 2 gives the horizontal displacements
in case I for the longitudinal impact problem. It is seen that the greater Rh the earlier the
arrival of the main disturbance. However, Rh appears to have very little effect on the periods.
Figures 3 and 4 show the horizontal strains in the pressure shock problem for cases I and II,
respectively. It is seen that the amplitudes and periods decrease with Rh . For case II, the
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situation is reversed. The larger Rh , the greater are the amplitudes and periods. Figures 5
and 6 give the horizontal displacements in the line load problem for cases I and II, respec­
tively. The main features that emerge are that in case I the greater Rh , the smaller the
amplitudes but the larger the periods, whereas for case II, both amplitudes and periods
increase with Rh .

Shown in Fig. 7 are the transverse strains for case II in the pressure shock problem at
the station (1 = 80. It is seen that the strains in layer two are considerably larger than
those in layer one.
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A6cTpaKT-npe).lCTaBnlIlOTcS! l/lopMaJlbHble peweHMS!, BblpalKeHHble 3aBMCMMOCTlIMH pacnpOCTpaHeHMlI
rapMOHM'IeCKOR BOJlHbl, ).IJlS! WHpOKoro KJJaCCa HeCTaL\MOHapHbIX, CMMMeTpM'IeCKMX, ynpyrHx BOJJH B
TpeXCJlORHbIX nJJaCTMHKax. jlaeTcS! npM6JJMlKeHMe caMoro MaJJOrO BH).Ia KOJJe6aHHR. HCnOJJb3Yll 3TOT
l/laKT If l/lopMaJJbHble peweHMS!, ).IaWTCli BblpalKeHMlI ).IJJS! y).laJJeHHblX nOJJeR Tpex cneyMl/lM'ieCKHX 3a).la'l.
06CYlK).IaWTCS! '1lfCJJeHHO 3TMe npM6J1HlKeHHble BblpalKeHMlI ).IJJlI ).IByX CneI..\Hl/lIt'leCKHX CJJy'laeB.


